
1 Introduction

In video- and board game design, patterns are long established

tools. These design patterns are used to gather inspiration,

communicate with peers and professionals or solve design as

well as interaction problems. Extensive collections for these

types of games have been compiled by various authors (e.g.

Bjork/Jussi 2004). When it comes to pattern libraries, location-

based games have not received an equivalent amount of

attention although first attempts have already been made to

compile lists of patterns that cover design aspects new to

mobile location-based games (Will 2013, Davidsson 2004).

The authors gathered these patterns by analysing a selection of

existing games. Patterns discovered that way are related to a

wide variety of very different aspects – starting from technical

related features up to the social consequences of putting a

player into an outdoor environment. However, authors stress

that these pattern lists are far from being complete and have to

be extended continuously by increasing the number of analysed

games. Most pattern languages give the definition, usage

description and resulting outcome to a reoccurring game

mechanic. Typically, these facts are described textually, but are

not defined in any kind of formal language (Dormans 2013).

The issue of giving a formal description of a defined subspace

of design problems has not been sufficiently addressed by

research so far. Using formal description, location-based game

patterns could be implemented into software tools, that would

be able to support game designers in exploring strength and

weaknesses of given designs just by adjusting various

parameters. Tools like these could overcome the difficulties,

developers face in location-based game development

(Jacob/Coelho 2011).

In this paper I present a systematic approach for the

identification of a subset of spatio-temporal design patterns for

location-based games. By means of a self-imposed restriction

to the examined problem space, I am able to give pre- and

postconditions for each pattern. There are no detailed

descriptions for every pattern in this work, instead an

exemplary account of only one pattern is included. Rather than

concentrating on elaborating on individual items, the focus lies

on giving a clear and straightforward definition of a variety of

related patterns. A software tool has been created which is able

to simulate the introduced patterns in different geographic

environments, giving designers the opportunity to explore

advantage and disadvantages of each pattern under different

conditions.

The remaining paper is structured as followed: In section 2

the approach to systematic exploration of spatio-temporal game

design patterns is given. This is followed by a list of the patterns

found. As an example, one of the patterns is described in further

detail. In section 3 the simulation framework, that serves as a

basis for the simulation routines that implement identified

game design patterns, is introduced. The practical benefits of

this application are discussed and the visualisation output is

portrayed. Finally, I conclude with a discussion of lessons

learned and give an outlook on future research.

2 Pattern Exploration

The purpose of this library of location-based game design

patterns differs from that of other collections. Its intention is

not just to collect patterns that are applied in existing games,

but to maybe even uncover, describe and name unknown and

never before used patterns that could be implemented in future

generations of location-based games. For this reason, the

collection process was not researching a selection of existing

games. Instead I chose a proven game model as starting point

for the analysis, the player model of Heinz and Schlieder

(2015). This player model abstracts from the details of specific

location-based games by providing generic descriptions of the

Location-based Game Design Pattern Exploration

Through Agent-Based Simulation

 Thomas Heinz

Research Group on Computing in the Cultural Sciences

University of Bamberg, Germany

thomas.heinz@uni.bamberg.de

Abstract

The development and balancing of location-based games is challenging, because the gameplay depends on local environmental conditions. A
tool based analysis of common game mechanics could provide a remedy for this problem, but requires precisely defined gameplay patterns.

This paper presents systematic selection of spatio-temporal game design patterns together with a software tool, able to simulate location-based

gameplay in different spatial environments.

Keywords: Geogames, Location-based Games, Game Design Patterns, Agent-Based Simulation

Keywords: location-based games, game design patterns, agent-based simulation

AGILE 2017 – Wageningen, May 09-12, 2017

game elements needed for modelling a wide range of game

mechanics.

The geogame model allows for a multitude of different

relations between the game entities it defines, such as

topological, Euclidean and also independencies between entity

states. The possible outcomes are too numerous to be all

covered in a first exploration/collection process. Therefore,

further restrictions were imposed. Patterns should initially only

refer to the relation between the two most important entities.

These are:

Players: The most essential element of every game. In the

case of location-based games, players move through their

geographic environment while trying to win the game by

executing given game actions. In this process players

experience their environment. The knowledge about this

environment is enriched by data displayed on devices – in most

cases smartphones or tablets – running the game application,

displaying a map that visualizes entities relevant for the player.

Places: A finite set of (immobile) areas of interest in the

geographic environment. Game actions are often bound to

corresponding places and a player can only execute them if

he/she is located there.

Every game application has to contain an implementation of

its relevant game mechanics and has to be able to decide over

the outcome of this game. Hence, virtual representations of

relevant game entities have to be stored. Location-based games

also require the software to have a GIS component that handles

the position and geometries of mentioned entities. In almost

any location-based game, players are reduced to simple point

objects. In the case of places, the respective GIS objects are

chosen depending on game mechanic use cases. Sometimes it

is sufficient to store the place as a point (point of interest). If

the game mechanic needs to calculate exactly whether the

player is located inside a specific region, this place (region of

interest) has to be linked to a polygon geometry.

Game design patterns that will be explored in this work

specifically refer to the virtual representations (PoI, RoI) of

involved game entities. These representations are also used

when the game decides on the outcome of a game action.

Therefore, they play a central role in the balancing of game

mechanics. Area of focus of the patterns will be the player.

Differentiating between the geometry types for places and the

specification that places cannot act on themselves, three

couples of entities can be identified:

 Player – PoI

 Player – RoI

 Player – Player

The game patterns will describe relations between the entities

of each couple that belonging to the perception of the player,

that can also be applied to the geometries of the entities. Two

fundamental relations provide the basis for the pattern

exploration procedure:

Equals/Contains: Relates to the position of the geometries

and indicates whether a player is located directly at a place or

shares his/her location with another player. Small differences

in the position can be neglected depending on the respective

application. This subsection of the region connection calculus

(RCC) (Randell et al., 1992) was chosen because it plays the

most important role in games, already implemented on top of

the geogame model. Other RCC relations will be evaluated in

future works.

Line of Sight (LoS): Indicates whether a line of sight between

the player and other entity exists. The line of sight may be

blocked by the environment the player is moving through. Any

kind of entity state changes are ignored.

2.1 Spatio-temporal Pattern Listing

For a first pattern listing, each pattern will be defined by a

change of the connection between an entities couple. Both

relations can be observed separately or in interpendence with

each other by building the Cartesian product of each relation

and its negation. In the latter case not all combinations are

possible because a LoS is automatically in existence if the

equals/contains link is evaluated to be true. In table 1 all of the

45 different relations between the entity couples are listed.

Each entry represents a game design pattern and was given a

name. Some of the pairing’s patterns offer a lot of similarities.

This is also shows in the pattern names, which in some cases

read exactly the same because identical game mechanics are

applied to different kind of game entities.

Table 1: Listing of selected spatio-temporal game design patterns

Precondition Postcondition Player - POI Player - RoI Player - Player

¬EQ EQ Go to Enter Meet

EQ ¬ EQ Leave Leave Separate

¬ EQ ¬ EQ Stay away Avoid Stay separate

EQ EQ Stay at Stay inside Stay together

¬LoS LoS Get in sight Get in sight Get in sight

LoS ¬ LoS Get out of sight Get out of sight Get out of sight

¬EQ, ¬LoS EQ Search and go to Search and enter Search and

meet

¬EQ, LoS EQ Go to Enter Meet

EQ ¬EQ, ¬LoS Leave and

get out of sight

 Leave and

get out of sight

Separate and hide

EQ ¬EQ, LoS Leave and

stay in sight

 Leave and

stay in sight

Separate and

stay in sight

¬EQ, ¬LoS ¬EQ, LoS Look for Look for Look for

¬EQ, LoS ¬EQ, ¬LoS Get out of sight Get out of sight Hide from

¬EQ, ¬LoS ¬EQ, ¬LoS Stay out of sight Stay out of sight Stay out of sight

¬EQ, LoS ¬EQ, LoS Stay in sight Stay in sight Stay in sight

AGILE 2017 – Wageningen, May 09-12, 2017

2.2 Example Pattern Description

The following short description for one of the listed patterns

will serve as an example for an entry as it will be found in the

pattern library. Whenever possible, pattern names as well as

pattern descriptions will be given from the perspective of the

player.

Figure 1: Symbolization of the game mechanic

Pattern title: Search and enter

Preconditions: ¬EQ, ¬LoS

Postconditions: EQ

Explanation: The players goal is to enter the RoI geometry. At

the beginning, the player has no line of sight to the RoI. The

player may, however, have knowledge about the location of the

RoI via textual description or any kind visualization of the RoI.

The player moves through his/her geographic environment in

search for it. The pattern is terminated once the player has

entered the geometry defined by the RoI.

Sibling patterns: Search and go to, Search and meet

1 https://pypi.python.org/pypi/Mesa/
2 https://ipython.org/notebook.html

3 Simulations Routines

Technical details and a detailed walkthrough of the simulation

framework created especially for the exploration of said

patterns will be omitted. These will be explored in a follow-up

work. Nevertheless, a short description will be given to explain

the advantages over established agent-based simulation

frameworks.

The simulation framework is based on a heavily modified

version of the agent-based simulation framework MESA1

(Masad/Kazil 2015). One of the most interesting features of this

software is the ability to create HTML based visualizations that

are updated and can be made interactive via websocket-

protocol. It is intended to embed said visualizations into local,

HTML based notebooks. These notebooks are being used as

“interactive computational environment, in which you can

combine code execution, rich text, mathematics, plots and rich

media”2. By switching the “visualization server” component of

the framework it was modified in such a way that simulation

visualizations can be served over the internet. This enables

users to use the software through a browser on any device

connected to the internet and removes the need to install

additional software. The simulation server was embedded into

a Django-Channels3 application. This enables not only the real-

time communication between clients and the server but also

makes it possible to integrate user and rights management to

the application, that can be applied to the execution of

simulation runs. Registered users are able to create their own

configurations for each pattern routine listed in section 3.

Figure 2 shows a simple setup for the search and enter pattern

made, using the editor. Users of the editor can draw and edit

vectors and geometries on a map. By doing this, they are

creating game entities. Created editor configurations are saved

into a database and can be edited later as well as shared with

other users via a hyperlink. To make location-based simulation

possible, MESA was extended by a GIS component. This

3 https://github.com/django/channels

Figure 2: Creating a pattern configuration with the browser based editor

AGILE 2017 – Wageningen, May 09-12, 2017

component uses the well-known python libraries “shapely”4

and “pyproject”5. To enable simulations with realistic player

locomotion the routing functionality presented in Heinz and

Schlieder 2015 was recreated. A browser based visualization of

a pattern simulation is shown in figure 3. To create map based

visualizations, the software library “leaflet”6 was used. Map

tiles originate from the OpenStreetMap project. Both, the

editor, as well as the simulation visualization web application

are also able to run on mobile devices (e.g. smartphone, tablet).

As a consequence, simulation configurations and simulation

runs can be created/run on-site if desired. Depending on the

kind of pattern, each game entity, placed in a configuration, is

associated with a specific, built-in agent-behavior. Agents act

in such a way that they try to transform a patterns state from the

given preconditions to the specified postconditions. In doing so

they try to match human player behavior in the same way as it

is described in Heinz and Schlieder 2015.

4 Discussion and Outlook

This paper presents a small selection of location-based game

design patterns. In the future the library of game design patterns

is going to be extended. Moreover, it will be easily applicable

to wide variety of game design problems due to its usage of an

abstract game model. Usage and implementation of the

described patterns is facilitated by their formal description.

The simulation of these patterns via a web based simulation

framework already works flawlessly. Being able to set up self-

chosen configurations in all kinds of geographic environments,

without the need for any kind of special hardware seems like a

promising approach for designers of location-based games and

applications. With this kind of simulation framework – usable

on any portable device – users are able to create and simulate

pattern configurations for site specific game mechanics, while

being on-site and making themselves familiar with the

environment. Users can easily share simulations with others via

4 http://toblerity.org/shapely/project.html
5 https://jswhit.github.io/pyproj/

a hyperlink. This will further improve communication about

problems or benefits of applying game design patterns to

certain conditions.

A next topic to explore are the combinations and interactions

between different patterns. Computational tools will be added

on top of the existing simulation routines. This will help

designers with the task of balancing game mechanics for

specific spatial environments.

References

Adams, E. and Dormans, J. (2012). Game mechanics: advanced

game design. New Riders.

Davidsson, O., Peitz, J. and Björk, S. (2004). Game design

patterns for mobile games. Project report to Nokia

Research Center.

Dormans, J. (2013). Making design patterns work. In

Proceedings of the Second Workshop on Design Patterns

in Games, DPG ’13.

Heinz, T. and Schlieder, C. (2015). An Agent-Based

Simulation Framework for Location-Based Games.

Jacob, N. and Coelho, A. F. (2011). Issues in the development

of location-based games. International Journal of

Computer Games Technology

Masad, D. and Kazil, J. (2015). Mesa: An Agent-Based

Modeling Framework. 14th PYTHON in Science

Conference, 53-60.

Randell, D., Zhan C., and Anthony C. A spatial logic based on

regions and connection. KR 92 (1992): 165-176.

Schlieder, C., Kiefer, P. and Matyas, S. (2005). Geogames: A

conceptual framework and tool for the design of location-

based games from classic board games. Intelligent

Technologies for Interactive Entertainment, 164-173.

Will, C. (2013). A Pattern Language for Designing Location-

based Games. Diploma Thesis, RWTH Aachen

University.

6 http://leafletjs.com/

Figure 3: Visualization of a location based game design simulation routine

