

Geogame Design lab: Agent-based Simulation

Thomas Heinz, Christoph Schlieder University of Bamberg

What to Expect from the Lab

Part I: Places of Game Play

- Learn to identify issues of POG data management
- Create a relocation of the Guesstimate game
- Part II: Game Balancing through Spatial Analysis
 - Learn to model game elements
 - Balance games through spatio-temporal mechanics
- Part III: Simulation
 - Learn when to use agent-based simulation
 - Model a game strategy for a software player

Places of Game Play

A first game Mechanics

- Game Mode
 - Singleplayer
- Game experience
 - Provides a (almost) random exploration experience of an urban environment
 - See Geo-Art from Débord: Dérive (1956)
 - Hou Je Bek(2001):
 Algorithmic Walking

Guesstimate Narrative

Pizza PepeDroni Delivery Service

- Incredible: the best pizza in town is delivered on campus by super fast drones!
- Just indicate your location by specifying your distance to four landmarks. The drone determines where to find you and, once landed, shows its location on the map.
- If your distance guesses are inaccurate, you may have to walk a few steps to collect your pizza.
- Try to guess the distances as accurately as possible to obtain a maximum number of pizzas during the next 20 minutes

Guesstimating spatial distances

Spatial Task

- 4 landmark locations on screen map
- Guesstimate the distance to your current position

3 1558s	3	0 🍸
Gabelmo		m
Dom		m
Altes Ratha	aus	m
Klein Veneo	dig	m
Okay C	lear	

Input: Guesstimation Data

Output: Best Fit Position

Physical Scoring Mechanism

Scale Matters

Task: Determine Game Field Parameters

Task

- Does the size of the game field (bounding circle) influence the course of the game?
- In what way?

Task: Think as a Designer

Task

- The game should be played for 30 min and consist of roughly about 6 rounds
- What radius would you choose for the bounding circle of the landmarks

Places of Gameplay

Landmarks

- Worst case: Bounding circle with radius R meter
- Rule of thumb: Walking distance: 0,5 * R
- Or some other empirical grounded magic formula
- Game Duration
 - Example 30 min
 - Expected Number of walks: 5
 - Time for each round: 6 min = 5 min walking
 - -5 min at 1 m/s: 5 min * 60 * 1 m/s = 300m

Content Creation for Geogames

- Geodata has to be collected and stored
- Suitable software for..
 - Data gathering
 - Web Mapping + Editor
 - GIS Software
 - Data storage
 - Configuration Files
 - (Spatial) Database

http://www.arcgis.com/features/features.html

Task: Create Your Own Guesstimate Game Field

- Create a Guesstimate game field for Helsinki or your home town
- Use the Guesstimate Editor: <u>http://www.geogames-</u> <u>team.org/guesstimate/editor/</u>
- Add at least 12 Features to your map
- Download the Android game at:

http://www.geogamesteam.org/files/guesstimate.apk

Game Balancing

From Singleplayer to Multiplayer

- Imbalanced games are not fun to play
- Methods of balancing
 - Symmetry of forces
 - Negative Feedback loops

Imba

- Nerf
- OP (Overpowered)

Know your

Gamer Slang

Buff

. . .

Example Geogame: GeoTicTacToe

- 9 geographic positions serve as game board
- A player places her or his token by physically moving to that position
- The player that first places three token in a row wins

Questions

- Both players are playing on the same game field. Is that enough balancing?
- Brainstorm a suitable strategy for GeoTicTacToe.

Why it does not work

Problem

- Simply mapping a game board into the geographic space leads to trivial games!
- Without turns, the sequence of moves depends only on the speed whith which the players move

A trivial winning strategy: "Be faster than your opponent!"

A spatial solution?

Balancing speed differences by spatially distorting the game board

A temporal solution!

Basic idea

- The players wait at the geograpic game positions for a determined (=computed) period of time.
- The Bamberg Geogames team explores this idea in research since 2004

Geogames as a race game

Locomotion

- The sportive element is present in any challenging Geogame
- Extreme version (1)
 - "100-meter sprint"
 - The Geogame is played as a pure race game with synchronization time = 0 s

GeoTicTacToe

Geogames as strategic game

Strategy

- Strategic reasoning counts in any challenging Geogame
- Extreme version (2)
 - "Outdoor chess"
 - The Geogame is played as a pure strategic game with synchronization time >> 0

Simulation

Problems with Spatial Analysis

- Conventional spatial analysis requires a lot of test run data
- Game mechanics are dependent on local conditions
- Not very good for balancing player tactics against each other

Testing Location-based Game Designs

Testing in the field

- Time consuming
- Different environments

Game analytics

- Feedback from player data
- e.g. trajectory analysis
 EI-Nasr et al. (2013)

Game Analysis and Simulation to Minimizing Testing in the Field

Game tree analysis

- Searching the game's problem space
 e.g. Bouzy et al. (2012)
- Strategies in games
 - Players do try to exploit weaknesses of their opponents
- Agent-based simulation
 - Embody different strategies
 - Study game balancing for different strategy combinations

Agent-based Simulation for Development of Location-Based Game Mechanics

- Numerous agent-based Simulation Toolkits available
- Few that support processing of geographical data

Existing Agent-Based Simulation Toolkits

Player Model

- Game Elements:
 Places, Players,
 Resources, State space
- Player model that is field-tested in a variety of different Geogames

Pedestrian Routing

Real-world data

- Import from OpenStreetMap
- Free-space navigation
 - Visibility graph algorithm
 - Implementation extends the Graphhopper library

Player Strategies

Random (= dumb)

- Randomly chose the place to move to
- Paper
 - Optimal strategy for paper and pencil version: center is best move, …
- Nearest
 - Optimize locomotion behavior, ignore problem space

Comparison of Player Tactics

- Provides interesting insights to designers
- Superiority of a tactic may depend on the spatial layout
- Results can not been produced by state space analysis

		~	~	~ ~	
	Player A				
		RANDOM	PAPER	NEAREST	
Р	RAND.	A wins: 115	A wins: 137	A wins: 231	
1		B wins: 120	B wins: 97	B wins: 18	
а		Ties: 15	Ties: 16	Ties: 1	
у	PAPER	A wins: 0	A wins: 111	A wins: 250	
e		B wins: 250	B wins: 104	B wins: 0	
r		Ties: 0	Ties: 35	Ties: 0	
	NEAR:	A wins: 33	A wins: 0	A wins: 128	
В		B wins: 212	B wins: 250	B wins: 122	
		Ties: 5	Ties: 0	Ties:	

		~ ~	~ ~		
	Player A				
		RANDOM	PAPER	NEAREST	
Р	RAND.	A wins: 110	A wins: 156	A wins: 206	
1		B wins: 112	B wins: 82	B wins: 36	
а		Ties: 28	Ties: 13	Ties: 8	
у	PAPER.	A wins: 65	A wins: 115	A wins: 161	
e		B wins: 173	B wins: 85	B wins: 89	
r		Ties: 12	Ties: 50	Ties: 0	
	NEAR.	A wins: 22	A wins: 71	A wins: 129	
В		B wins: 222	B wins: 179	B wins: 121	
		Ties: 6	Ties: 0	Ties: 0	

Supporting the Game Designer

Specific lessons

- On the small game field NEAREST always outperforms PAPER
- Game balancing
 - Naive players frequently adopt the PAPER strategy
 - Do not disadvantage naive strategies too much

Consequences

 Do not use the small game field for the tourist game

Task: Create a Balanced GeoTicTacToe Game Board

- Use this online editor: <u>http://geogames-</u> <u>team.org/files/helsinki/geottt/</u>
- Keep different player tactics in mind
- Send the

thomas.heinz@unibamberg.de

Thank you for your attention.

Questions & Discussion

Locomotion Time

- the time a player needs to move from game position A to game position B
- computed from geodata and assumptions about physical abilities
- Not necessarily symmetric time(P_x,A,B) ≠ time(P_x,B,A)

	L11	L12	
L11		300	
L12	300		
L13	540		

Explicit specification of locomotion times

Exhaustive analysis

Heinz, Schlieder | Game Design Lab: Agent-based Simulation

Design parameters

