Geogame Design lab: Agent-based Simulation

Thomas Heinz, Christoph Schlieder
University of Bamberg
What to Expect from the Lab

- **Part I: Places of Game Play**
 - Learn to identify issues of POG data management
 - Create a relocation of the Guesstimate game

- **Part II: Game Balancing through Spatial Analysis**
 - Learn to model game elements
 - Balance games through spatio-temporal mechanics

- **Part III: Simulation**
 - Learn when to use agent-based simulation
 - Model a game strategy for a software player
Places of Game Play
A first game Mechanics

- Game Mode
 - Singleplayer

- Game experience
 - Provides a (almost) random exploration experience of an urban environment
 - See Geo-Art from Débord: Dérive (1956)
Guesstimate Narrative

- **Pizza PepeDroni Delivery Service**
 - Incredible: the best pizza in town is delivered on campus by super fast drones!
 - Just indicate your location by specifying your distance to four landmarks. The drone determines where to find you and, once landed, shows its location on the map.
 - If your distance guesses are inaccurate, you may have to walk a few steps to collect your pizza.
 - Try to guess the distances as accurately as possible to obtain a maximum number of pizzas during the next 20 minutes
Guesstimating spatial distances

Spatial Task
- 4 landmark locations on screen map
- Guesstimate the distance to your current position
Input: Guesstimation Data

- 70 m = your distance estimate for landmark 1
- 30 m = your distance estimate for landmark 3
- 90 m = your distance estimate for landmark 2
Output: Best Fit Position

You current location

Position, which best fits your distance estimates
Physical Scoring Mechanism
Scale Matters

You current location

Distance you will have to walk

10 m

1 km
Task:

Determine Game Field Parameters

Task

- Does the size of the game field (bounding circle) influence the course of the game?
- In what way?
Task: Think as a Designer

Task

- The game should be played for 30 min and consist of roughly about 6 rounds
- What radius would you choose for the bounding circle of the landmarks
Places of Gameplay

- **Landmarks**
 - Worst case: Bounding circle with radius R meter
 - Rule of thumb: Walking distance: 0.5 * R
 - Or some other empirical grounded magic formula

- **Game Duration**
 - Example 30 min
 - Expected Number of walks: 5
 - Time for each round: 6 min = 5 min walking
 - 5 min at 1 m/s: 5 min * 60 * 1 m/s = 300m
Content Creation for Geogames

- Geodata has to be collected and stored
- Suitable software for:
 - Data gathering
 - Web Mapping + Editor
 - GIS Software
 - Data storage
 - Configuration Files
 - (Spatial) Database

http://www.arcgis.com/features/features.html
Task:
Create Your Own Guesstimate Game Field

- Create a Guesstimate game field for Helsinki or your home town
- Use the Guesstimate Editor:
- Add at least 12 Features to your map
- Download the Android game at:
Game Balancing
From Singleplayer to Multiplayer

- Imbalanced games are not fun to play
- Methods of balancing
 - Symmetry of forces
 - Negative Feedback loops

Know your Gamer Slang

- Imba
- Nerf
- OP (Overpowered)
- Buff
- …
Example Geogame: GeoTicTacToe

- 9 geographic positions serve as game board
- A player places her or his token by physically moving to that position
- The player that first places three token in a row wins
Questions

- Both players are playing on the same game field. Is that enough balancing?
- Brainstorm a suitable strategy for GeoTicTacToe.
Why it does not work

Problem

- Simply mapping a game board into the geographic space leads to trivial games!
- Without turns, the sequence of moves depends only on the speed with which the players move

A trivial winning strategy: „Be faster than your opponent!“
A spatial solution?

Balancing speed differences by spatially distorting the game board
A temporal solution!

- Basic idea
 - The players wait at the geographic game positions for a determined (=computed) period of time.
 - The Bamberg Geogames team explores this idea in research since 2004
Geogames as a race game

- **Locomotion**
 - The sportive element is present in any challenging Geogame

- **Extreme version (1)**
 - „100-meter sprint“
 - The Geogame is played as a pure race game with synchronization time = 0 s

GeoTicTacToe
Geogames as strategic game

- **Strategy**
 - Strategic reasoning counts in any challenging Geogame

- **Extreme version (2)**
 - „Outdoor chess“
 - The Geogame is played as a pure strategic game with synchronization time >> 0
Simulation
Problems with Spatial Analysis

- Conventional spatial analysis requires a lot of test run data
- Game mechanics are dependent on local conditions
- Not very good for balancing player tactics against each other
Testing Location-based Game Designs

- Testing in the field
 - Time consuming
 - Different environments

- Game analytics
 - Feedback from player data
 - e.g. trajectory analysis
 El-Nasr et al. (2013)
Game Analysis and Simulation to Minimizing Testing in the Field

- **Game tree analysis**
 - Searching the game’s problem space
 e.g. Bouzy et al. (2012)

- **Strategies in games**
 - Players do try to exploit weaknesses of their opponents

- **Agent-based simulation**
 - Embody different strategies
 - Study game balancing for different strategy combinations
Agent-based Simulation for Development of Location-Based Game Mechanics

- Numerous agent-based Simulation Toolkits available
- Few that support processing of geographical data
Existing Agent-Based Simulation Toolkits

Requirements
- Agent-based
- Game elements
- Pedestrian locomotion
- Real-world data

Contributions
- Framework
- Player model
- Pedestrian routing
- OSM import

Agent-based game simulation framework

ABGGS
Agent-based Geogame Simulator
Player Model

- Game Elements: Places, Players, Resources, State space

- Player model that is field-tested in a variety of different Geogames
Pedestrian Routing

- **Real-world data**
 - Import from OpenStreetMap

- **Free-space navigation**
 - Visibility graph algorithm
 - Implementation extends the Graphhopper library
Player Strategies

- **Random (= dumb)**
 - Randomly chose the place to move to

- **Paper**
 - Optimal strategy for paper and pencil version: center is best move, ...

- **Nearest**
 - Optimize locomotion behavior, ignore problem space
Comparison of Player Tactics

- Provides interesting insights to designers
- Superiority of a tactic may depend on the spatial layout
- Results can not been produced by state space analysis
Supporting the Game Designer

Specific lessons
- On the small game field NEAREST always outperforms PAPER

Game balancing
- Naive players frequently adopt the PAPER strategy
- Do not disadvantage naive strategies too much

Consequences
- Do not use the small game field for the tourist game
Task:
Create a Balanced GeoTicTacToe Game Board

- Use this online editor: http://geogames-team.org/files/helsinki/geottt/
- Keep different player tactics in mind
- Send the thomas.heinz@uni-bamberg.de
Thank you for your attention.

Questions & Discussion
Locomotion Time

- the time a player needs to move from game position A to game position B
- computed from geodata and assumptions about physical abilities
- Not necessarily symmetric: \(\text{time}(P_x, A, B) \neq \text{time}(P_x, B, A) \)

<table>
<thead>
<tr>
<th></th>
<th>L11</th>
<th>L12</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Explicit specification of locomotion times
Exhaustive analysis

speed-factor = 1.02
syncTime = 5
→
length of game 8

- The player P_X has a strategy to win in 8 moves.
Design parameters

- speed-factor = 1.02
- syncTime = 5
- game area 500 m x 500 m
- velocity 3 m/s
- pause for 83 s